By Topic

Minimizing Latency in Fault-Tolerant Distributed Stream Processing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brito, A. ; Syst. Eng. Group, Tech. Univ. Dresden, Dresden, Germany ; Fetzer, C. ; Felber, P.

Event stream processing (ESP) applications target the real-time processing of huge amounts of data. Events traverse a graph of stream processing operators where the information of interest is extracted. As these applications gain popularity, the requirements for scalability, availability, and dependability increase. In terms of dependability and availability, many applications require a precise recovery, i.e., a guarantee that the outputs during and after a recovery would be the same as if the failure that triggered recovery had never occurred. Existing solutions for precise recovery induce prohibitive latency costs, either by requiring continuous checkpoint or logging (in a passive replication approach) or perfect synchronization between replicas executing the same operations (in an active replication approach). We introduce a novel technique to guarantee precise recovery for ESP applications while minimizing the latency costs as compared to traditional approaches. The technique minimizes latencies via speculative execution in a distributed system. In terms of scalability, the key component of our approach is a modified software transactional memory that provides not only the speculation capabilities but also optimistic parallelization for costly operations.

Published in:

Distributed Computing Systems, 2009. ICDCS '09. 29th IEEE International Conference on

Date of Conference:

22-26 June 2009