By Topic

The Impact of Communication Models on Routing-Algorithm Convergence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aaron D. Jaggard ; Rutgers Univ., Newark, NJ, USA ; Vijay Ramachandran ; Rebecca N. Wright

Autonomous routing algorithms, such as BGP, are intended to reach a globally consistent set of routes after nodes iteratively and independently collect, process, and share network information. Generally, the important role of the mechanism used to share information has been overlooked in previous analyses of these algorithms. In this paper, we explicitly study how the network-communication model affects algorithm convergence. To do this, we consider a variety of factors, including channel reliability, how much information is processed from channels, and how many channels are processed simultaneously. Using these factors, we define a taxonomy of communication models and identify particular models of interest, including those used in previous theoretical work, those that most closely model real-world implementations of BGP, and those of potential interest for the design of future routing algorithms. We characterize an extensive set of relationships among models in our taxonomy and show that convergence depends on the communication model in nontrivial ways. These results highlight that certain models are best for proving conditions that guarantee convergence, while other models are best for characterizing conditions that might permit nonconvergence.

Published in:

Distributed Computing Systems, 2009. ICDCS '09. 29th IEEE International Conference on

Date of Conference:

22-26 June 2009