By Topic

Novel terrain relative lunar positioning system using lunar Digital Elevation Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Temel, S. ; Aeronaut. & Space Technol. Inst. (ASTIN), Turkish Air Force Acad. (TUAFA), Istanbul, Turkey ; Unaldi, N. ; Ince, F.

The aim of terrain relative navigation systems (TRN) is to augment inertial navigation by providing position estimates relative to known lunar surfaces. Also the purpose of TRN systems is to assist a lunar landing spacecraft with precise and safe landing. Such systems collect the height values from the lunar surface with the help of active range sensors which are then matched within a terrain digital elevation map (DEM) database. Although lunar terrain elevation maps are rare and have low resolution quality, after lunar reconnaissance orbit (LRO) mission is completed by 2010, maps of 20-25 m resolution will be gained. In this proposed work, a model of the lunar surface is developed with terrain generation algorithms. All the possible profiles (height values) and the slopes of the profiles that the sensor may collect during a position estimation phase are determined in advance. The DEM is pre-processed and reorganized into a digital profile attributes database (DPAD). DPAD records are organized in a way to optimize the lander's position estimation process. DPAD data is available as a function of lunar latitudes and longitudes. The DPAD over which the lunar lander is flying is loaded into the lander's memory. A novel TRN algorithm has been developed to estimate the precise location of the lander. This algorithm matches the determined slope values within the DPAD. Where only one match is found, the position of the lander is determined. When more-than-one matches arise, the system iterates until only one position solution is reached. In order to achieve accurate continuous navigation, the sensor should make measurements at specific intervals. The difference between the lander's estimate and the actual height that are measured by laser altimeter, can be used to calculate the position errors, thus providing the lander a continuous navigation solution as in TERCOM [7].

Published in:

Recent Advances in Space Technologies, 2009. RAST '09. 4th International Conference on

Date of Conference:

11-13 June 2009