By Topic

Efficient two-layered cycle-accurate modeling technique for processor family with same instruction set architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chien-De Chiang ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Juinn-Dar Huang

In this paper, we propose a new processor modeling technique that partitions a cycle-accurate model into two layers, an inner functional kernel and an outer timing shell. The kernel is an untimed but high-speed instruction set simulator (ISS) and is suitable for software development; while the timing shell provides additional timing details for cycle-accurate hardware behavior. When a new processor member is added to the family, it demands only a new timing shell because the kernel is identical to that of its ancestors sharing the same instruction set architecture (ISA). It not only helps ensure functional consistency but significantly reduces the model development time. We take two processors with a same ISA, an ARM7-like one and an ARM9-like one, as our modeling examples to demonstrate the feasibility of the proposed technique. Finally, the experimental results show that, on average our two-layered cycle-accurate model is about 30 times faster than the RTL model in simulation.

Published in:

VLSI Design, Automation and Test, 2009. VLSI-DAT '09. International Symposium on

Date of Conference:

28-30 April 2009