Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Recommendation technique-based government-to-business personalized e-services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jie Lu ; Lab. of Decision Syst. & e-Service Intell., Univ. of Technol. Sydney, Broadway, NSW, Australia ; Shambour, Q. ; Guangquan Zhang

One of the new directions in current e-government development is to provide personalized online services to citizens and businesses. Recommendation techniques can bring a possible solution for this issue. This study proposes a hybrid recommendation approach to provide personalized government to business (G2B) e-services. The approach integrates fuzzy sets-based semantic similarity and traditional item-based collaborative filtering methods to improve recommendation accuracy. A recommender system named Intelligent Business Partner Locator (IBPL) is designed to apply the proposed recommendation approach for supporting government agencies to recommend business partners.

Published in:

Fuzzy Information Processing Society, 2009. NAFIPS 2009. Annual Meeting of the North American

Date of Conference:

14-17 June 2009