By Topic

Analysis and Compensation of Phase Variations Versus Gain in Amplifiers Verified by SiGe HBT Cascode RFIC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Frank Ellinger ; Dept. of Circuit Design & Network Theor., Dresden Univ. of Technol., Dresden, Germany ; Udo Jorges ; Uwe Mayer ; Ralf Eickhoff

The transmission phase variations versus gain in common emitter and common base amplifiers are analyzed revealing that these stages can be tuned to yield opposite phase characteristics versus gain. By cascading these two stages, e.g., on the basis of a cascode, and optimizing added feedback elements, it is possible to compensate these phase variations. A universal analysis based on bipolar transistors is derived. However, the insights can be mapped to other transistors such as field-effect transistors. The analysis is verified by implementation of a low-noise cascode amplifier in 0.25-mum silicon germanium heterojunction bipolar transistors. At 50-Omega terminations, 1.6-V supply voltage, 1-mA current consumption, and a gain of 7 dB plusmn 0.25 dB, a noise figure of less than 3.2 dB, and a third-order output intercept point of -3 dBm are measured within a frequency range from 5.2 to 5.9 GHz. For a gain control range of 12 and 20 dB, the transmission phase variations are reduced to 3deg and 6deg, respectively, which is around a factor of 7 better than for a conventional noncompensated cascode topology. The fully integrated circuit is well suited for wireless local area network systems applying adaptive antenna combining and operating in accordance to the 802.11 a/n standards.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:57 ,  Issue: 8 )