By Topic

Effective Maximum Likelihood Grid Map With Conflict Evaluation Filter Using Sonar Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lee, Kyoungmin ; Dept. of Mech. Eng., Pohang Univ. of Sci. & Technol., Pohang, South Korea ; Wan Kyun Chung

In this paper, we address the problem of building a grid map using cheap sonar sensors, i.e., the problem of using erroneous sensors when seeking to model an environment as accurately as possible. We rely on the inconsistency of information among sonar measurements and the sound pressure of the waves from the sonar sensors to develop a new method of detecting incorrect sonar readings, which is called the conflict evaluation with sound pressure (CEsp). To fuse the correct measurements into a map, we start with the maximum likelihood (ML) approach due to its ability to manage the angular uncertainty of sonar sensors. However, since this approach suffers from heavy computational complexity, we convert it to a light logic problem called the maximum approximated likelihood (MAL) approach. Integrating the MAL approach with the CEsp method results in the conflict evaluated maximum approximated likelihood (CEMAL) approach. The CEMAL approach generates a very accurate map that is close to the map that would be built by accurate laser sensors and does not require adjustment of parameters for various environments.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 4 )