Cart (Loading....) | Create Account
Close category search window
 

Complementary DNA Microarray Image Processing Based on the Fuzzy Gaussian Mixture Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Athanasiadis, E.I. ; Lab. of Med. Phys., Univ. of Patras, Patras, Greece ; Cavouras, D.A. ; Spyridonos, P.P. ; Glotsos, D.T.
more authors

The objective of this paper was to investigate the segmentation ability of the fuzzy Gaussian mixture model (FGMM) clustering algorithm, applied on complementary DNA (cDNA) images. Following a standard established procedure, a simulated microarray image of 1600 cells, each containing one spot, was produced. For further evaluation of the algorithm, three real microarray images were also used, each containing 6400 spots. For the task of locating spot borders and surrounding background (BG) in each cell, an automatic gridding process was developed and applied on microarray images. The FGMM and the Gaussian mixture model (GMM) algorithms were applied to each cell with the purpose of discriminating foreground (FG) from BG. The segmentation abilities of both algorithms were evaluated by means of the segmentation matching factor, coefficient of determination, and concordance correlation, in respect to the actual classes (FG-BG pixels) of the simulated spots. Pairwise correlation and mean absolute error of the real images among replicates were also calculated. The FGMM was found to perform better and with equal processing time, as compared to the GMM, rendering the FGMM algorithm an efficient alternative for segmenting cDNA microarray images.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.