Cart (Loading....) | Create Account
Close category search window
 

Fabrication of ordered anodic aluminum oxide with matrix arrays of pores using nanoimprint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Namyong Kwon ; Sungkyunkwan University Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Korea ; Kyohyeok Kim ; Jinhee Heo ; Ilsub Chung

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.3139884 

Anodic aluminum oxide (AAO) with matrix arrays of pores was obtained using nanoimprint and anodizing. Si3N4 imprint stamps were fabricated using electron-beam lithography. The Si3N4 stamps were imprinted into Al films grown on Si wafers by applying a force of 250 kg for 10 s. Two different diameters (45 and 80 nm) and two different periodic distances (100 and 200 nm) of the square patterns in Si3N4 imprint stamp were transferred into an Al film as a form of shallow pores. The Al films were then anodized in 0.3M oxalic acid under conditions of 4 °C at 40 V. The authors found a linear relationship between the interpore distance and anodizing voltage (2.5 nmV-1) to obtain a square array in AAO. In addition, the matrix pores in AAO tend to form a natural hexagonal pattern as the anodizing time increases. The surface images are obtained using field-emission secondary-electron microscope and scanning probe microscopy.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:27 ,  Issue: 4 )

Date of Publication:

Jul 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.