By Topic

Quantization of wavelet coefficients for image compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Mohammed ; Dept. of Electr. Eng., Nebraska Univ., Lincoln, NE, USA ; K. Sayood

Summary form only given, as follows. The use of wavelets and multiresolution analysis is becoming increasingly popular for image compression. We examine several different approaches to the quantization of wavelet coefficients. A standard approach in subband coding is to use DPCM to encode the lowest band while the higher bands are quantized using a scalar quantizer for each band or a vector quantizer. We implement these schemes using a variety of quantizer including PDF optimized quantizers and recursively indexed scalar quantizers (RISQ). We then incorporate a threshold operation to prevent the removal of perceptually important information. We show that there is a both subjective and objective improvements in performance when we use the RISQ and the perceptual thresholds. The objective performance measure shows a consistent two to three dB improvement over a wide range of rates. Finally we use a recursively indexed vector quantizer (RIVQ) to encode the wavelet coefficients. The RIVQ can operate at relatively high rates and is therefore particularly suited for quantizing the coefficients in the lowest band

Published in:

Data Compression Conference, 1995. DCC '95. Proceedings

Date of Conference:

28-30 Mar 1995