Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Characterization of Healthy and Pathological Voice Through Measures Based on Nonlinear Dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Henriquez, P. ; Dept. of Signal & Commun., Univ. of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain ; Alonso, J.B. ; Ferrer, M.A. ; Travieso, C.M.
more authors

In this paper, we propose to quantify the quality of the recorded voice through objective nonlinear measures. Quantification of speech signal quality has been traditionally carried out with linear techniques since the classical model of voice production is a linear approximation. Nevertheless, nonlinear behaviors in the voice production process have been shown. This paper studies the usefulness of six nonlinear chaotic measures based on nonlinear dynamics theory in the discrimination between two levels of voice quality: healthy and pathological. The studied measures are first- and second-order Renyi entropies, the correlation entropy and the correlation dimension. These measures were obtained from the speech signal in the phase-space domain. The values of the first minimum of mutual information function and Shannon entropy were also studied. Two databases were used to assess the usefulness of the measures: a multiquality database composed of four levels of voice quality (healthy voice and three levels of pathological voice); and a commercial database (MEEI Voice Disorders) composed of two levels of voice quality (healthy and pathological voices). A classifier based on standard neural networks was implemented in order to evaluate the measures proposed. Global success rates of 82.47% (multiquality database) and 99.69% (commercial database) were obtained.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 6 )