Cart (Loading....) | Create Account
Close category search window
 

CoCRF Deformable Model: A Geometric Model Driven by Collaborative Conditional Random Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsechpenakis, G. ; Center for Comput. Sci., Univ. of Miami, Coral Gables, FL, USA ; Metaxas, D.

We present a hybrid framework for integrating deformable models with learning-based classification, for image segmentation with region ambiguities. We show how a region-based geometric model is coupled with conditional random fields (CRF) in a simple graphical model, such that the model evolution is driven by a dynamically updated probability field. We define the model shape with the signed distance function, while we formulate the internal energy with a C1 continuity constraint, a shape prior, and a term that forces the zero level of the shape function towards a connected form. The latter can be seen as a term that forces different closed curves on the image plane to merge, and, therefore, our model inherently carries the property of merging regions. We calculate the image likelihood that drives the evolution using a collaborative formulation of conditional random fields (CoCRF), which is updated during the evolution in an online learning manner. The CoCRF infers class posteriors to regions with feature ambiguities by assessing the joint appearance of neighboring sites, and using the classification confidence to regulate the inference. The novelties of our approach are (i) the tight coupling of deformable models with classification, combining the estimation of smooth region boundaries with the robustness of the probabilistic region classification, (ii) the handling of feature variations, by updating the region statistics in an online learning manner, and (iii) the improvement of the region classification using our CoCRF. We demonstrate the performance of our method in a variety of images with clutter, region inhomogeneities, boundary ambiguities, and complex textures, from the zebra and cheetah examples to medical images.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.