By Topic

Improving the Human–Robot Interface Through Adaptive Multispace Transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muoz, L.M. ; Univ. Politec. de Catalunya, Barcelona, Spain ; Casals, A.

Teleoperation is essential for applications in which, despite the availability of a precise geometrical definition of the working area, a task cannot be explicitly programmed. This paper describes a method of assisted teleoperation that improves the execution of such tasks in terms of ergonomics, precision, and reduction of execution time. The relationships between the operating spaces corresponding to the human-robot interface triangle are analyzed. The proposed teleoperation aid is based on applying adaptive transformations between these spaces.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 5 )