By Topic

An Information-Theoretic View of Network-Aware Malware Attacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zesheng Chen ; Dept. of Electr. & Comput. Eng., Florida Int. Univ., Miami, FL, USA ; Chuanyi Ji

This work provides an information-theoretic view to better understand the relationships between aggregated vulnerability information viewed by attackers and a class of randomized epidemic scanning algorithms. In particular, this work investigates three aspects: 1) a network vulnerability as the nonuniform vulnerable-host distribution, 2) threats, i.e., intelligent malwares that exploit such a vulnerability, and 3) defense, i.e., challenges for fighting the threats. We first study five large data sets and observe consistent clustered vulnerable-host distributions. We then present a new metric, referred to as the nonuniformity factor, that quantifies the unevenness of a vulnerable-host distribution. This metric is essentially the Renyi information entropy that unifies the nonuniformity of a vulnerable-host distribution with different malware-scanning methods. Next, we draw a relationship between Renyi entropies and randomized epidemic scanning algorithms. We find that the infection rates of malware-scanning methods are characterized by the Renyi entropies that relate to the information bits in a nonunform vulnerable-host distribution extracted by a randomized scanning algorithm. Meanwhile, we show that a representative network-aware malware can increase the spreading speed by exactly or nearly a nonuniformity factor when compared to a random-scanning malware at an early stage of malware propagation. This quantifies that how much more rapidly the Internet can be infected at the early stage when a malware exploits an uneven vulnerable-host distribution as a network-wide vulnerability. Furthermore, we analyze the effectiveness of defense strategies on the spread of network-aware malwares. Our results demonstrate that counteracting network-aware malwares is a significant challenge for the strategies that include host-based defenses and IPv6.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:4 ,  Issue: 3 )