By Topic

On the Force Control of Kinematically Defective Manipulators Interacting With an Unknown Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zemiti, N. ; Inst. des Syst. Intelligents et Robot., Univ. Pierre & Marie Curie - Paris 6, Paris, France ; Morel, G. ; Micaelli, A. ; Cagneau, B.
more authors

In this paper, the problem of force feedback control of kinematically defective manipulators (KDMs) is considered. KDMs are robot manipulators that have fewer joints than the dimension of the space in which their end-effector moves. It is well known that controlling the end-effector velocity of an n-joint KDM can be easily solved by appropriately selecting n components of the output twist, thus squaring the control problem. On the contrary, we show that such a component selection approach is not appropriate in general to solve the force control problem for KDMs. In particular, for advanced force control applications, such as comanipulation, where the contact geometry is not known in advance, the selection of the wrench components leads to a lack of passivity, which in turn may induce instability. This instability does not arise from the system dynamics. Rather, it can be viewed as a new form of kinematic instability. Moreover, by formulating the problem in the joint space, we show how to properly design a stable force controller for KDMs subject to arbitrary external forces applied to their end-effector. Furthermore, we propose several implementations for pure force control and damping control. Experimental results with a kinematically defective laparoscopic comanipulator illustrate these propositions.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:18 ,  Issue: 2 )