By Topic

Applications of Ultra-Low Field Magnetic Resonance for Imaging and Materials Studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
Espy, M. ; Los Alamos Nat. Lab., Los Alamos, NM, USA ; Flynn, M. ; Gomez, J. ; Hanson, C.
more authors

Recently it has become both possible and practical to perform MR at magnetic fields from muT to mT, the so-called ultra-low field (ULF) regime. SQUID sensor technology allows for ultra-sensitive detection while pulsed pre-polarizing fields greatly enhance signal. The instrumentation allows for unprecedented flexibility in signal acquisition sequences. Here we present the results from several applications of ULF MR which exploit the unique abilities of the method. These include novel ways to image both brain structure and function either by combination of MRI with magnetoencephalography or direct observation of the interaction of neural currents with the spin population, and ULF relaxometry for detection and characterization of materials relevant to numerous non-invasive inspection applications. We briefly describe the motivation, advantages, and recent results of several new applications of the ULF MR method. Specifically, we present recent data measuring the interaction of weak ( ~ 10 muA) currents with a spin-population in a water phantom, as studied by ULF MRI with implications for neural current imaging. We also present data from a ULF MR relaxometer developed inspecting liquids in a check-point for the presence of hazardous material.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:19 ,  Issue: 3 )