By Topic

HEMT-Based Readout Technique for Dark- and Photon-Count Studies in NbN Superconducting Single-Photon Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Dark counts in superconducting single-photon detectors (SSPDs) manifest themselves as spontaneous, transient voltage pulses, typically indistinguishable from photon counts. We present here a new readout technique based on integrating the SSPD with a low-noise, cryogenic high-electron-mobility transistor (HEMT) with high-input impedance. This arrangement allowed us to achieve amplitude resolution of the recorded output transients. In two-dimensional superconducting nanostripes, the physics of photon counting is based on the hotspot formation mechanism, while the dark counts correspond to voltage transients triggered by the vortex-antivortex motion and/or phase-slip centers. Thus, their respective transients can be distinguished by comparing the output pulse amplitude distributions. Our scheme also allowed us to perform photon-energy-resolution studies by comparing the SSPD output pulse amplitude distributions (the mean pulse amplitude and the distribution width) collected for incident single photons with different energies.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:19 ,  Issue: 3 )