By Topic

Value-at-Risk-Based Two-Stage Fuzzy Facility Location Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shuming Wang ; Grad. Sch. of Inf., Production & Syst., Waseda Univ., Kitakyushu, Japan ; Junzo Watada ; Witold Pedrycz

Reducing risks in location decisions when coping with imprecise information is critical in supply chain management so as to increase competitiveness and profitability. In this paper, a two-stage fuzzy facility location problem with value-at-risk (VaR), called VaR-FFLP, is proposed, which results in a two-stage fuzzy zero-one integer programming problem. Some properties of the VaR-FFLP, including the value of perfect information (VPI), the value of fuzzy solution (VFS), and the bounds of the fuzzy solution, are discussed. Since the fuzzy parameters of the location problem are represented in the form of continuous fuzzy variables, the determination of VaR is inherently an infinite-dimensional optimization problem that cannot be solved analytically. Therefore, a method based on the discretization of the fuzzy variables is proposed to approximate the VaR. The approximation approach converts the original problem into a finite-dimensional optimization problem. A pertinent convergence theorem for the approximation approach is proved. Subsequently, by combining the simplex algorithm, the approximation approach, and a mechanism of genotype-phenotype-mutation-based binary particle swarm optimization (GPM-BPSO), a hybrid GPM-BPSO algorithm is being exploited to solve the VaR-FFLP. A numerical example illustrates the effectiveness of the hybrid GPM-BPSO algorithm and shows its enhanced performance in comparison with the results obtained by other approaches using genetic algorithm (GA), tabu search (TS), and Boolean BPSO (B-BPSO).

Published in:

IEEE Transactions on Industrial Informatics  (Volume:5 ,  Issue: 4 )