By Topic

Scaling Laws for Data-Centric Storage and Querying in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Joon Ahn ; Ming Hsieh Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Krishnamachari, B.

We use a constrained optimization framework to derive scaling laws for data-centric storage and querying in wireless sensor networks. We consider both unstructured sensor networks, which use blind sequential search for querying, and structured sensor networks, which use efficient hash-based querying. We find that the scalability of a sensor network's performance depends upon whether the increase in energy and storage resources with more nodes is outweighed by the concomitant application-specific increase in event and query loads. We derive conditions that determine: 1) whether the energy requirement per node grows without bound with the network size for a fixed-duration deployment, 2) whether there exists a maximum network size that can be operated for a specified duration on a fixed energy budget, and 3) whether the network lifetime increases or decreases with the size of the network for a fixed energy budget. An interesting finding of this work is that three-dimensional (3D) uniform deployments are inherently more scalable than two-dimensional (2D) uniform deployments, which in turn are more scalable than one-dimensional (1D) uniform deployments.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:17 ,  Issue: 4 )