Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Least-Squares Approximation of Structured Covariances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fu Lin ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Jovanović, M.R.

State covariances of linear systems satisfy certain constraints imposed by the underlying dynamics. These constraints dictate a particular structure of state covariances. However, sample covariances almost always fail to have the required structure. The renewed interest in using state covariances for estimating the power spectra of inputs gives rise to the approximation problem. In this note, the structured covariance least-squares problem is formulated and the Lyapunov-type matricial linear constraint is converted into an equivalent set of trace constraints. Efficient unconstrained maximization methods capable of solving the corresponding dual problem are developed.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 7 )