By Topic

Representing sets of orientations as convex cones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pal Johan From ; Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway ; Jan Tommy Gravdahl

In a wide range of applications the orientation of a rigid body does not need to be restricted to one given orientation, but can be given as a continuous set of frames. We address the problem of defining such sets and to find simple tests to verify if an orientation lies within a given set. The unit quaternion is used to represent the orientation of the rigid body and we develop three different sets of orientations that can easily be described by simple constraints in quaternion space. The three sets discussed can also be described as convex cones in Ropf3 defined by different norms. By describing the sets as convex cones and using certain properties of dual cones, we are able find simpler representations for the set of orientations and computationally faster and more accurate tests to verify if a quaternion lies within the given set.

Published in:

Robotics and Automation, 2009. ICRA '09. IEEE International Conference on

Date of Conference:

12-17 May 2009