Cart (Loading....) | Create Account
Close category search window
 

Modeling and 3D local estimation for in-plane and out-of-plane motion guidance by 2D ultrasound-based visual servoing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mebarki, R. ; IRISA, INRIA Rennes-Bretagne Atlantique, Campus de Beaulieu, 35700 cedex, France ; Krupa, Alexandre ; Chaumette, F.

This paper presents a new model-free visual servoing that is able to servo a robotized 2D ultrasound probe that interacts with a soft tissue object. It makes direct use of the B-mode ultrasound images in order to reach a desired one. This approach does not require the 3D model of the object nor its location in the 3D space. The visual features are based on image moments. The exact analytical form of the interaction matrix relating the image moments variation to the probe velocity is modelled. To perform model-free servoing, the approach combines the image points coordinates with the probe pose to estimate efficiently 3D parameters required in the control law. The approach is validated with simulation and experimental results showing its robustness to different errors and perturbations.

Published in:

Robotics and Automation, 2009. ICRA '09. IEEE International Conference on

Date of Conference:

12-17 May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.