By Topic

A two-steps next-best-view algorithm for autonomous 3D object modeling by a humanoid robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A novel approach is presented which aims at building autonomously visual models of unknown objects, using a humanoid robot. Previous methods have been proposed for the specific problem of the next-best-view during the modeling and the recognition process. However our approach differs as it takes advantage of humanoid specificities in terms of embedded vision sensor and redundant motion capabilities. In a previous work, another approach to this specific problem was presented which relies on a derivable formulation of the visual evaluation in order to integrate it with our posture generation method. However to get rid of some limitations we propose a new method, formulated using two steps: (i) an optimization algorithm without derivatives is used to find a camera pose which maximizes the amount of unknown data visible, and (ii) a whole robot posture is generated by using a different optimization method where the computed camera pose is set as a constraint on the robot head.

Published in:

Robotics and Automation, 2009. ICRA '09. IEEE International Conference on

Date of Conference:

12-17 May 2009