By Topic

Laser ablation of polymeric materials at 157 nm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Costela, A. ; Instituto de Química Física ‘‘Rocasolano,’’ CSIC, Serrano 119, 28006 Madrid, Spain ; Garcia‐Moreno, I. ; Florido, F. ; Figuera, J.M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.358756 

Results are presented on the ablation by 157 nm laser radiation of polytetrafluoroethylene (PTFE), polyimide, polyhydroxybutyrate (PHB), poly(methyl methacrylate) (PMMA), and poly(2‐hydroxyethyl methacrylate) with 1% of ethylene glycol dimethacrylate as a crosslinking monomer. Direct photoetching of PHB and undoped PTFE is demonstrated for laser fluences ranging from 0.05 to 0.8 J/cm2. The dependence of the ablation process on the polymer structure is analyzed, and insight into the ablation mechanism is gained from an analysis of the data using Beer–Lambert’s law and the kinetic model of the moving interface. Consideration of the absorbed energy density required to initiate significant ablation suggests that the photoetching mechanism is similar for all the polymers studied. © 1995 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:77 ,  Issue: 6 )