By Topic

Dependence of damage and strain on the temperature of Si irradiation in epitaxial Ge0.10Si0.90 films on Si(100)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Lie, D.Y.C. ; California Institute of Technology, Pasadena, California 91125 ; Song, J.H. ; Vantomme, A. ; Eisen, F.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.358755 

Damage and strain produced in a 370‐nm‐thick strained epitaxial Ge0.10Si0.90 film on Si(100) by irradiation with 320 keV 28Si+ ions at fixed temperatures ranging from 40 to 150 °C and for doses from 1 to 30×1014/cm2 have been measured by MeV 4He channeling spectrometry, transmission electron microscopy, and high‐resolution x‐ray diffractometry. The ion energy was chosen so that the maximum damage created by irradiation occurs very near the GeSi‐Si interface. For all temperatures, the retained damage and the perpendicular strain induced by the irradiation are significantly greater in the GeSi epilayer than in the Si substrate. For all doses the retained damage and the induced perpendicular strain become small above 100 °C. Both rise nonlinearly with increasing ion dose. They are related to each other differently in GeSi than in bulk Si or Ge irradiated at room temperature. Postirradiation furnace annealing can remove a large portion of the induced damage and strain for nonamorphized samples. Amorphized samples regrow by solid‐phase epitaxy after annealing at 550 °C for 30 min; the regrown GeSi is, however, highly defective and elastically relaxed. A consequence of this defectiveness is that irradiation‐induced amorphization in metastable GeSi is undesirable for applications where good crystalline quality is required. Ion implantation above room temperature can prevent amorphization. © 1995 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:77 ,  Issue: 6 )