Cart (Loading....) | Create Account
Close category search window

New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Chen, Chuangtian ; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China ; Wang, Yebin ; Xia, Younan ; Wu, Baichang
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Potassium fluoroboratoberyllate KBe2BO3F2 (KBBF) has been revealed theoretically and experimentally as a novel ultraviolet nonlinear optical crystal, but it is found to be very difficult to grow in a large size, because of the weak binding interaction between the (Be2BO3) units, which leads to an apparent layer habit in the growth. By using a molecular engineering approach, oxygen bridges when brought in to strengthen the binding between the infinite units are found to be useful to overcome the above shortcoming of KBBF, and in the light of it another new ultraviolet nonlinear optical crystal—strontium boratoberyllate Sr2Be2B2O7 (SBBO) has been discovered. The linear optical properties of SBBO are similar to KBBF’s, but its nonlinear optical properties are better than that of the latter. d22(SBBO)≂d22(β‐BaB2O4), which is two times higher than d11 of KBBF. SBBO has very good mechanical properties, and it is also not deliquescent. So SBBO is expected to have great potential for the application in ultraviolet nonlinear optical devices. © 1995 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:77 ,  Issue: 6 )

Date of Publication:

Mar 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.