By Topic

Plate impact response of ceramics and glasses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Raiser, G.F. ; Division of Engineering, Brown University, Providence, Rhode Island 02912 ; Wise, J.L. ; Clifton, R.J. ; Grady, D.E.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Soft‐recovery plate impact experiments have been conducted to study the evolution of damage in polycrystalline Al2O3 samples. Examination of the recovered samples by means of scanning electron microscopy and transmission electron microscopy has revealed that microcracking occurs along grain boundaries; the cracks appear to emanate from grain‐boundary triple points. Velocity‐time profiles measured at the rear surface of the momentum trap indicate that the compressive pulse is not fully elastic even when the maximum amplitude of the pulse is significantly less than the Hugoniot elastic limit. Attempts to explain this seemingly anomalous behavior are summarized. Primary attention is given to the role of the intergranular glassy phase which arises from sintering aids and which is ultimately forced into the interfaces and voids between the ceramic grains. Experiments are reported on the effects of grain size and glass content on the resistance of the sample to damage during the initial compressive pulse. To further understand the role of the glass, plate impact experiments were conducted on glass with chemical composition comparable to that which is present in the ceramic. These experiments were designed to gain further insight into the possibility of ‘‘failure waves’’ in glasses under compressive loading.

Published in:

Journal of Applied Physics  (Volume:75 ,  Issue: 8 )