Cart (Loading....) | Create Account
Close category search window
 

Modeling and characterization of interface state parameters and surface recombination velocity at plasma enhanced chemical vapor deposited SiO2–Si interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yasutake, K. ; School of Electrical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 ; Chen, Z. ; Pang, S.K. ; Rohatgi, A.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.356307 

The effective surface recombination velocity (Seff) at plasma enhanced chemical vapor deposited (PECVD) SiO2/Si interface as a function of surface band bending under illumination was obtained by combining the photoconductive voltage decay measurements with indium tin oxide gate bias voltage, metal‐oxide‐semiconductor‐capacitance voltage, measurements and theoretical calculations. The capture cross sections for electrons and holes are obtained for the first time for the PECVD SiO2/Si interface state. Theoretical calculations of Seff based on the interface parameters, including interface state density and cross sections for electron and hole, were performed to see the effects of the positive oxide charge density (Qox) on Seff. It is found that roughly a 10 times larger value of Qox compared to the midgap interface state density is required to reduce Seff below 10 cm/s for 5 Ω cm (100) p‐type Si. These results prove the potential of PECVD SiO2 for effective passivation of Si surfaces for devices like solar cells.  

Published in:

Journal of Applied Physics  (Volume:75 ,  Issue: 4 )

Date of Publication:

Feb 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.