By Topic

Raman scattering from LO phonon‐plasmon coupled modes in gallium nitride

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kozawa, T. ; Toyota Central R&D Laboratories, Inc., Nagakute‐cho, Aichi 480‐11, Japan ; Kachi, T. ; Kano, H. ; Taga, Y.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Raman spectra of n‐type gallium nitride with different carrier concentrations have been measured. The LO phonon band shifted towards the high‐frequency side and broadened with an increase in carrier concentration. Results showed that the LO phonon was coupled to the overdamped plasmon in gallium nitride. The carrier concentrations and damping constants were determined by line‐shape fitting of the coupled modes and compared to values obtained from Hall measurements. The carrier concentrations obtained from the two methods agree well. As a result, the dominant scattering mechanisms in gallium nitride are deformation‐potential and electro‐optic mechanisms.

Published in:

Journal of Applied Physics  (Volume:75 ,  Issue: 2 )