By Topic

Performance of the star‐shaped flyer in the study of brittle materials: Three dimensional computer simulations and experimental observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.351419 

A three dimensional finite element computer simulation has been performed to assess the effects of release waves in normal impact soft‐recovery experiments when a star‐shaped flyer plate is used. Their effects on the monitored velocity‐time profiles have been identified and their implications in the interpretation of wave spreading and spall signal events highlighted. The calculation shows that the star‐shaped flyer plate indeed minimizes the magnitude of edge effects. The major perturbation to the one‐dimensional response within the central region of the target plate results from spherical waves emanating from the corners of the star‐shaped plate. Experimental evidence of the development of a damage ring located in coincidence with the eight entrant corners of the flyer plate is reported. Microscopy studies performed in the intact recovered samples revealed that this damage ring eliminates undesired boundary release waves within the central region of the specimen. Consequently, the observed damage in compression and tension within this region can be attributed primarily to the conditions arising from a state of uniaxial strain.  

Published in:

Journal of Applied Physics  (Volume:72 ,  Issue: 8 )