Cart (Loading....) | Create Account
Close category search window
 

Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo‐fluid hybrid model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sommerer, Timothy J. ; Department of Electrical and Computer Engineering, University of Illinois, 1406 West Green Street, Urbana, Illinois 61801 ; Kushner, M.J.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.351196 

Capacitively coupled radio‐frequency (rf) glow discharges are standard sources in plasma assisted materials processing. Theoretical analyses of rf discharges have been hampered by the computational difficulty of simultaneously resolving nonequilibrium electron transport and plasma chemistry. We have developed a hybrid Monte Carlo‐fluid simulation that can simulate nonequilibrium electron transport while executing with the speed of a fluid simulation. An electron Monte Carlo simulation (EMCS) is used to calculate the electron energy distribution (EED) as a function of position and phase in the rf cycle. Collision rates and transport coefficients are calculated from the EED and used in a self‐consistent fluid model (SCFM) of charged particle behavior and a neutral chemistry/transport model. Electric fields from the SCFM are cycled back to the EMCS, and the process is iterated until convergence. All pertinent heavy particle (charged and neutral) reactions can be included as well as collisions of electrons with ions, excited states, and reaction products. The hybrid model is applied to a variety of gas mixtures of interest to materials processing.

Published in:

Journal of Applied Physics  (Volume:71 ,  Issue: 4 )

Date of Publication:

Feb 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.