Cart (Loading....) | Create Account
Close category search window

Defect‐property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium‐doped yttrium aluminum garnet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rotman, S.R. ; Ben‐Gurion University of the Negev, Department of Electrical and Computer Engineering, Beer‐Sheva, Israel ; Tuller, H.L. ; Warde, C.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The electrical and optical properties of calcium and cerium‐doped yttrium aluminum garnet (Ca,Ce:YAG) have been studied. Ca,Ce:YAG is a mixed ionic and electronic conductor with an ionic conductivity activation energy of 4.3 eV. Evidence of cluster formation with a consequent higher‐than‐expected activation energy is presented. The cerium normally enters the crystal as Ce+4, but it may be converted to Ce+3 under reducing atmospheres at elevated temperatures.

Published in:

Journal of Applied Physics  (Volume:71 ,  Issue: 3 )

Date of Publication:

Feb 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.