Cart (Loading....) | Create Account
Close category search window

Formation of PtSi‐contacted p+n shallow junctions by BF+2 implantation and low‐temperature furnace annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsui, Bing-Yue ; Department of Electronics Engineering and the Institute of Electronics, National Chiao‐Tung University, 75 Po‐Ai Street, Hsinchu, Taiwan, Republic of China ; Tsai, Jiunn‐Yann ; Chen, Mao-Chieh

Your organization might have access to this article on the publisher's site. To check, click on this link: 

This work investigates the characteristics of PtSi‐silicided p+n shallow junctions fabricated by implanting BF+2 ions into either the Pt/Si (ITM scheme) or the PtSi/Si (ITS scheme) structure followed by annealing in N2 furnace at temperatures from 650 to 800 °C. For a structure with Pt film of 30 nm thickness or PtSi film of 60 nm thickness, the implantation energy ranges from 40 to 80 keV with a dose ranging from 1×1015 to 1×1016 cm-2. For the ITS samples with BF+2 implantation at 40 keV, all ions are confined in the PtSi layer; therefore, only a modified Schottky junction is formed by the diffusion of boron atoms from the PtSi film during the annealing. The junction depth may be as shallow as 30 nm from the PtSi/Si interface. A complete p+n junction is formed for the ITM samples with implantation at 40 keV as well as all the samples implanted at 80 keV. The junction thus obtained has a forward ideality factor lower than 1.02 and a reverse current density less than 0.2 nA/cm2 at -5 V. Activation energy measurement indicates that most of the implantation damages have been recovered after annealing at a temperature as low as 700 °C. The reverse area and peripheral leakage current density are separated by measuring diodes of different perimeter/area ratio. For good samples, the reverse peripheral current comes from the surface generation current within the depletion region underneath the field oxide. All of the experimental results reveal that either Pt or PtSi film can be employed as an efficient barrier film in the ITM/ITS technique to form excellent and ultrashallow junctions with a low thermal budget.

Published in:

Journal of Applied Physics  (Volume:69 ,  Issue: 8 )

Date of Publication:

Apr 1991

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.