Cart (Loading....) | Create Account
Close category search window
 

Nonlinear model predictive control of a multistage evaporator system using recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Atuonwu, J.C. ; Sch. of Eng., Cranfield Univ., Cranfield ; Cao, Y. ; Rangaiah, G.P. ; Tade, M.O.

The use of multistage evaporators, motivated by the energy economy from reusing the flashed steam is common in a wide range of process industries. Such evaporators however present several control problems which manifest in the form of strong interactions among the many process variables, significant dead times, tendency to open-loop instability and severe nonlinearities. In this paper, a nonlinear model predictive control (NMPC) scheme utilizing a proportional-integral (PI) controller in its inner loop is developed for a simulated industrial-scale five-stage evaporator using a continuous-time recurrent neural network in state space as its internal model. Input-output data obtained from closed-loop system identification experiments are used in training the network by the Levenberg-Marquardt algorithm with automatic differentiation. A similar approach is used in developing an optimal control law for the plant based on the model predictions. The effectiveness of this scheme is tested by simulating various control problem scenarios involving set-point tracking and disturbance rejection and comparing performance with that of decentralized PI controllers developed earlier. Results show significant improvements in control performance, particularly in terms of settling time.

Published in:

Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on

Date of Conference:

25-27 May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.