By Topic

Mining top-k and bottom-k correlative crime patterns through graph representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peter Phillips ; School of Business (IT), James Cook University, Townsville, QLD4811, Australia ; Ickjai Lee

Crime activities are geospatial phenomena and as such are geospatially, thematically and temporally correlated. Thus, crime datasets must be interpreted and analyzed in conjunction with various factors that can contribute to the formulation of crime. Discovering these correlations allows a deeper insight into the complex nature of criminal behavior. We introduce a graph based dataset representation that allows us to mine a set of datasets for correlation. We demonstrate our approach with real crime datasets and provide a comparison with other techniques.

Published in:

Intelligence and Security Informatics, 2009. ISI '09. IEEE International Conference on

Date of Conference:

8-11 June 2009