By Topic

Simulation and optimization of basic movements in FES-driven paraplegics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Puri, M. ; Dept. of Electr. & Comput. Eng., Maine Univ., Orono, ME, USA ; Wolpert, S.

In this study, a computer platform for investigating optimal trajectories of FES-induced motion was developed. Similar to a gait analysis program, this system interprets body segment lengths and joint angle trajectories for a subject undergoing an arbitrary movement, and displays that movement, along with a center of mass and time plot of the moment about the knee joint on-screen. Movements to be optimized in the near term are sit-to-stand transitions, stand-to-sit transitions, shifting weight side-to-side while seated, and single steps over small architectural barriers. These motions will be optimized for stability, efficiency, safety, and stress, as applied to a T-10 paraplegic human subject undergoing FNS of ten motor nerves in each leg. The program was demonstrated to work for sit-to-stand and stand-to-sit motions, and is now used to optimize those transitions

Published in:

Bioengineering Conference, 1995., Proceedings of the 1995 IEEE 21st Annual Northeast

Date of Conference:

22-23 May 1995