Cart (Loading....) | Create Account
Close category search window

Automatic emotion recognition for facial expression animation from speech

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bozkurt, E. ; Elektrik ve Bilgisayar Muhendisligi Bolumu, Koc Univ., Istanbul, Turkey ; Erzin, E. ; Erdem, C.E. ; Erdem, A.T.

We present a framework for automatically generating the facial expression animation of 3D talking heads using only the speech information. Our system is trained on the Berlin emotional speech dataset that is in German and includes seven emotions. We first parameterize the speech signal with prosody related features and spectral features. Then, we investigate two different classifier architectures for the emotion recognition: Gaussian mixture model (GMM) and hidden Markov model (HMM) based classifiers. In the experimental studies, we achieve an average emotion recognition rate of 83.42% using 5-fold stratified cross validation (SCV) method with a GMM classifier based on Mel frequency cepstral coefficients (MFCC) and dynamic MFCC features. Moreover, decision fusion of two GMM classifiers based on MFCC and line spectral frequency (LSF) features yields an average recognition rate of 85.30%. Also, a second-stage decision fusion of this result with a prosody-based HMM classifier further advances the average recognition rate up to 86.45%. Experimental results on automatic emotion recognition to drive facial expression animation synthesis are encouraging.

Published in:

Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th

Date of Conference:

9-11 April 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.