By Topic

Statistical facial feature extraction using joint distribution of location and texture information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yilmaz, M.B. ; Muhendislik ve Doga Bilimleri Fak., Sabanci Univ., Istanbul ; Erdogan, H. ; Unel, M.

A facial feature extraction method is proposed in this work, which uses location and texture information given a face image. Location and texture information can automatically be learnt by the system, from a training data. Best facial feature locations are found by maximizing the joint distribution of location and texture information of facial features. Performance of the method was found promising after it is tested using 100 test images. Also it is observed that this new method performs better than active appearance models for the same test data.

Published in:

Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th

Date of Conference:

9-11 April 2009