By Topic

Investigation of Bias Current and Modulation Frequency Dependences of Detectivity of YBCO TES and the Effects of Coating of Cu–C Composite Absorber Layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Moftakharzadeh, A. ; Sch. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran ; Kokabi, A. ; Bozbey, A. ; Ghodselahi, T.
more authors

Bolometric response and noise characteristics of YBCO superconductor transition edge IR detectors with relatively sharp transition and its resulting detectivity are investigated both theoretically and experimentally. The magnitude of response of a fabricated device was obtained for different bias currents and modulation frequencies. Using the measured and calculated bolometric response and noise characteristics, we found and analyzed the device detectivity versus frequency for different bias currents. The detectivity versus chopping frequency of the device did not decrease following the response strongly, due to the decrease of the noise at higher frequencies up to 1 kHz, resulting in maximum detectivity around the modulation frequency of 100 Hz. We also improved the responsivity of the device through the increase of the surface absorption by using a novel infrared absorber, which is made of a copper-carbon composite, coated in a low-temperature process. Within the modulation frequency range studied in this paper, comparison of device detectivity before and after coating is also presented.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:19 ,  Issue: 4 )