By Topic

Information Fusion in Kernel-Induced Spaces for Robust Subpixel Hyperspectral ATR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prasad, S. ; Mississippi State Univ., Starkville, MS ; Bruce, L.M.

Hyperspectral-based automatic target recognition (ATR) and classification systems often project the high-dimensional hyperspectral reflectance signatures onto a lower dimensional subspace using techniques such as principal component analysis, Fisher's linear discriminant analysis (LDA), and stepwise LDA. In a general classification framework, these projections are suboptimal and, in the absence of sufficient training data, are likely to be ill conditioned. In recent work, the authors proposed a divide-and-conquer approach that partitions the hyperspectral space into contiguous subspaces followed by a multiclassifier and decision-fusion (MCDF) framework. Although this technique alleviated the small-sample-size problem and provided a good recognition performance in light and moderate pixel mixing, the performance significantly decreased under severe mixing conditions, as it does with conventional ATR techniques. In this letter, the authors propose a kernel discriminant analysis-based projection in each subspace of the partition, followed by the MCDF framework to ensure robust recognition even in severe pixel-mixing conditions. The performance of the proposed system (as measured by overall recognition accuracies) is greatly superior to conventional dimensionality-reduction techniques as well as the more recently proposed LDA-based MCDF technique.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 3 )