Cart (Loading....) | Create Account
Close category search window
 

Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Campa, Andrej ; Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia ; Krc, Janez ; Topic, Marko

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3115408 

Two-dimensional optical model for simulation of thin-film solar cells with periodical textured interfaces is presented. The model is based on finite element method and uses triangular discrete elements for the structure description. The advantages of the model in comparison to other existing models are highlighted. After validation and verification of the developed simulator, simulations of a microcrystalline silicon solar cell with a sinusoidal grating texture applied to the interfaces are carried out. The analysis and optimization of the two grating parameters—period and height of the grooves—are performed with respect to the maximal short-circuit current density of the cell. Up to 45% increase in the current density is identified for the optimized structure, compared to that of the cell with flat interfaces. Optical losses in the periodically textured silver back reflector are determined.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 8 )

Date of Publication:

Apr 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.