Cart (Loading....) | Create Account
Close category search window

Ferroelectric phase transitions in three-component short-period superlattices studied by ultraviolet Raman spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tenne, D.A. ; Department of Physics, Boise State University, Boise, Idaho 83725-1570, USA ; Lee, H.N. ; Katiyar, R.S. ; Xi, X.X.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Vibrational spectra of three-component BaTiO3/SrTiO3/CaTiO3 short-period superlattices grown by pulsed laser deposition with atomic-layer control have been investigated by ultraviolet Raman spectroscopy. Monitoring the intensity of the first-order phonon peaks in Raman spectra as a function of temperature allowed the determination of the ferroelectric phase transition temperature Tc. Raman spectra indicate that all superlattices remain in the tetragonal ferroelectric phase with out-of-plane polarization in the entire temperature range below Tc. The dependence of Tc on the relative thicknesses of ferroelectric (BaTiO3) to nonferroelectric materials (SrTiO3 and CaTiO3) has been studied. The highest Tc was found in superlattices having the largest relative amount of BaTiO3, provided that the superlattice maintains its coherency with the substrate. Strain relaxation leads to a significant decrease in the ferroelectric phase transition temperature.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 5 )

Date of Publication:

Mar 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.