Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Modeling two-dimensional solid-phase epitaxial regrowth using level set methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Morarka, S. ; Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611-6200, USA ; Rudawski, N.G. ; Law, M.E. ; Jones, K.S.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3082086 

Modeling the two-dimensional (2D) solid-phase epitaxial regrowth (SPER) of amorphized Si (variously referred to as solid-phase epitaxial growth, solid-phase epitaxy, solid-phase epitaxial crystallization, and solid-phase epitaxial recrystallization) has become important in light of recent studies which have indicated that relative differences in the velocities of regrowth fronts with different crystallographic orientations can lead to the formation of device degrading mask edge defects. Here, a 2D SPER model that uses level set techniques as implemented in the Florida object oriented process simulator to propagate regrowth fronts with variable crystallographic orientation (patterned material) is presented. Apart from the inherent orientation dependence of the SPER velocity, it is established that regrowth interface curvature significantly affects the regrowth velocity. Specifically, by modeling the local SPER velocity as being linearly dependent on the local regrowth interface curvature, data acquired from transmission electron microscopy experiments matches reasonably well with simulations, thus providing a stable model for simulating 2D regrowth and mask edge defect formation in Si.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 5 )