By Topic

Si substrates texturing and vapor-solid-solid Si nanowhiskers growth using pure hydrogen as source gas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
9 Author(s)
Nordmark, H. ; Department of Physics, NTNU, NO-7491 Trondheim, Norway ; Nagayoshi, H. ; Matsumoto, N. ; Nishimura, S.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3078080 

Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi2 particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H2 flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi2 particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiHx species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi2 particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi2 particles on their tips as well as sometimes being incorporated into their structure.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 4 )