Cart (Loading....) | Create Account
Close category search window
 

Thermal conductivity of micromachined low-stress silicon-nitride beams from 77 to 325 K

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sultan, Rubina ; Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208, USA ; Avery, A.D. ; Stiehl, G. ; Zink, B.L.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3078025 

We present thermal conductivity measurements of micromachined 500 nm thick silicon-nitride (Si–N) beams suspended between two Si–N islands, in the temperature range from 77 to 325 K. The measured thermal conductivity, k, of Si–N at high temperatures is in good agreement with previously measured values for Si–N grown by low-pressure chemical vapor deposition, but behaves much differently as temperature is lowered, showing a dependence more similar to polycrystalline materials. Preliminary structural characterization by x-ray diffraction suggests that the material is likely nano- or polycrystalline. The micromachined suspended platform structure is designed to allow highly accurate measurements of the thermal conductivity of deposited metallic, semiconducting, or insulating thin films. As a demonstration, we present measurements of a 200 nm thick sputtered molybdenum film. In the entire temperature range the measured thermal conductivity matches the prediction of the Wiedemann–Franz thermal conductivity determined from measured electrical conductivity.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 4 )

Date of Publication:

Feb 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.