Cart (Loading....) | Create Account
Close category search window

Critical turbulent energy reductions in plasmas using weak magnetic fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raynor, Chavis T. ; Center for Plasma Science and Technology, Florida A&M University, Tallahassee, Florida 32310, USA ; Mezonlin, Ephrem D. ; Johnson, Joseph A.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

With an arc-driven shock tube, laser induced fluorescence, and a multipoint density diagnostic technique, we study the turbulence behind an ionizing shock wave in the presence of a magnetic field. The magnetic field is directed either parallel to or antiparallel to the direction of the shock wave’s propagation, and is configured in such a way as to couple with turbulent velocity fluctuations in the plane perpendicular to the direction of flow. We find that the magnetic field can be used to reduce the turbulent energy in a plasma system. Further, when the evolution to turbulence is treated as a second-order phase transformation, the critical turbulent energy decreases with increasing magnetic field.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 4 )

Date of Publication:

Feb 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.