Cart (Loading....) | Create Account
Close category search window
 

Determination of the strain energy release rate for C/a-Si composite film produced in nanoindentation tests

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang-Fu Han ; Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China ; Bo-Hsiung Wu ; Chao-Yu Huang ; Jen-Fin Lin

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3056392 

A general mechanical model that describes the contact behavior and deformations arising at all layers (including the substrate) is developed in the present study for multilayer specimens to evaluate the theoretical contact parameters. The governing differential equations for the depth solutions of the indenter tip formed at all layers of the specimen under their contact force and depth are developed individually. These two contact parameters allow the evaluation of the internal stress and strain using the membrane theory. The strain energy release rate can thus be determined if the internal stress is available. The mean value of these pop-in depths is almost constant when operating at various loading rates. The present model is precisely if it has good agreement with experiments. The pop-in internal stress was found to be strongly dependent on the C-film thickness (thus the material properties) but independent of the applied indentation system (thus indentation conditions). The pop-in internal stress and strain energy release rate can be significantly lowered by increasing the C-film thickness. Furthermore, pop-in always formed at a depth near the interface of the C/a-Si composite film and Si substrate.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 2 )

Date of Publication:

Jan 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.