Cart (Loading....) | Create Account
Close category search window

Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Koch, J.A. ; Lawrence Livermore National Laboratory, P.O. Box 808, L-481, Livermore, California 94551, USA ; Landen, Otto L. ; Kozioziemski, Bernard J. ; Izumi, N.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We explore various laser-produced plasma and inertial confinement fusion applications of phase-contrast x-ray radiography, and we show how the main features of these enhancements can be considered from a geometrical optics perspective as refraction enhancements. This perspective simplifies the analysis and often permits simple analytical formulas to be derived that predict the enhancements. We explore a raytrace approach to various material interface applications, and we explore a more general example of refractive bending of x rays by an implosion plasma. We find that refraction-enhanced x-ray radiography of implosions may provide a means to quantify density differences across shock fronts as well as density variations caused by local heating due to high-Z dopants. We also point out that refractive bending by implosions plasmas can blur fine radiograph features and can also provide misleading contrast information on area-backlit pinhole imaging experiments unless its effects are taken into consideration.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 11 )

Date of Publication:

Jun 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.