Cart (Loading....) | Create Account
Close category search window
 

Refracting Röntgen’s rays: Propagation-based x-ray phase contrast for biomedical imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Gureyev, T.E. ; CSIRO Materials Science and Engineering, Private Bag 33, Clayton, Victoria 3169, Australia ; Mayo, S.C. ; Myers, D.E. ; Nesterets, Ya.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3115402 

Absorption-contrast x-ray imaging serves to visualize the variation in x-ray attenuation within the volume of a given sample, whereas phase contrast allows one to visualize variations in x-ray refractive index. The former imaging mechanism has been well known and widely utilized since the time of Röntgen’s Nobel prize winning work, whereas the latter mechanism—sought for, but not found, by Röntgen himself—has laid the foundation for a revolution in x-ray imaging which is the central topic of this review. We consider the physical imaging mechanisms underlying both absorption contrast and phase contrast, together with the associated inverse problem of how one may obtain quantitative two- or three-dimensional information regarding a sample, given one or more phase-contrast images of the same. Practical questions are considered, regarding optimized phase-contrast imaging geometries as a function of detector resolution, source size, x-ray spectrum, and dose. Experimental examples pertaining to biomedical applications are given, and prospects for the future outlined.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 10 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.