By Topic

Experimental study of femtosecond laser-stimulated electrical discharges in small gaps and surface modifications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, J. ; Laboratory for Multiscale Processing and Characterization, The Ohio State University, Columbus, Ohio 43221, USA ; Farson, D.F. ; Rokhlin, S.I.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3055361 

Femtosecond laser-stimulated discharges in nanoscale and microscale gaps between etched nanoprobe tip cathodes and gold film anodes with applied dc potential were experimentally studied to define parameter ranges for their controlled formation and resulting surface modifications. For appropriate values of gap length, applied potential, and laser irradiance, breakdown discharges could be reliably stimulated by femtosecond laser pulses and the mean breakdown field was approximately an order of magnitude smaller than for breakdown without laser stimulation. For 500 nm gaps, discharges were observed for applied potentials as small as 20 V and controllable gold film surface melting was detected for applied potential of 27.5 V. Minor cathode tip ablation could be observed for femtosecond laser pulses that reliably stimulated discharges, suggesting that cathode material played an important role in stimulation of breakdown discharges in nanoscale gaps. Surface melting produced features as small as 60 nm on gold film when discharge current was limited by 1 MΩ series resistor.

Published in:

Journal of Applied Physics  (Volume:105 ,  Issue: 1 )